GSvit documentation

open source FDTD solver with GPU support

User Tools

Site Tools


docs:become

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
docs:become [2020/03/29 09:39]
pklapetek
docs:become [2020/03/29 09:41]
pklapetek
Line 13: Line 13:
  
 The Become benchmark grating was setup with voxel spacing of 5 nm in every direction. The total computational domain size was 240x100 voxels. The grating was formed by silver, using the PLRC metal handling approach. Periodic boundary conditions were used to introduce the grating periodicity. Total/​scattered field approach was used to inject the plane wave normally to the surface. TE mode calculation was used for this 2D case, which should be the p-polarisation case as requested. Near-to-far field calculation domain was set up to be outside of the plane wave source region, so only reflected and scattered electric field was propagated to the far-field. Time domain far field calculation was used. Far field data were calculated for wide range of angles for debugging purposes (i.e. not only for the directions of the particular diffraction orders). The Become benchmark grating was setup with voxel spacing of 5 nm in every direction. The total computational domain size was 240x100 voxels. The grating was formed by silver, using the PLRC metal handling approach. Periodic boundary conditions were used to introduce the grating periodicity. Total/​scattered field approach was used to inject the plane wave normally to the surface. TE mode calculation was used for this 2D case, which should be the p-polarisation case as requested. Near-to-far field calculation domain was set up to be outside of the plane wave source region, so only reflected and scattered electric field was propagated to the far-field. Time domain far field calculation was used. Far field data were calculated for wide range of angles for debugging purposes (i.e. not only for the directions of the particular diffraction orders).
-The model setup is sketched ​in the following figure. +The model setup and a calculation snapshot of the periodic area are shown in the following figure.
  
 +{{:​docs:​model.png?​600|}}
  
  
docs/become.txt · Last modified: 2020/04/24 12:27 by pklapetek